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Abstract: The synthesis of indolocarbazoles containing hydrogen bonding 
functionality mimicking the pharrnacophore contained within bioactive indolocarbazole 
natural products is reported. The indolocarbazoles are prepared via palladium 
catalyzed cross coupling of indoles followed by photochemical and thermal annulation 
reactions of chromium carbene complexes. © 1997 Elsevier Science Ltd. 

The indolocarbazole natural products have emerged as an important structural class based upon their 

high degree of biological activity which includes antitumor properties and, in particular, inhibition of protein 

kinase C. 1 Staurosporine was the first member of this class to be discovered 2 and since 1977 many related 

natural products have been reported. 3 'This in turn has spawned many synthetic efforts directed toward the 

synthesis of these natural products and structural analogues. 4, 5 

Several representative structures of indolocarbazoles are shown in Scheme 1. The key structural 

feature of the pharmacophore within these compounds is the presence of hydrogen bonding moieties at the top 

and bottom of a rigid indolocarbazole scaffold. 6 We report herein two new syntheses of indolocarbazoles via 

chromium carbene complexes which provide access to structures with new patterns of hydrogen bonding 

functionality on the central benzene ring. 
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We envisioned a versatile synthetic strategy to form differentially substituted indolocarbazoles via initial 

palladium catalyzed cross coupling of two indoles to form 2,2'-biindolyls, conversion to Fischer chromium 

carbene complexes and, finally, benzannulation reactionsT, 8 (Scheme 2). 

Scheme 2 
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Preparation of the key chromium carbene complexes 7a and 7b is illustrated in Scheme 3. lndole was 

iodinated at the 2 position using the procedure of Bergman and Venemalm 9 and then N-protected. Suzuki 

cross coupling 10 of the in situ generated boronic esters 4 and 2-iodoindole, 2, provided unsymmetrical 2,2'- 

biindolyls 5. Iodination at the 3' position using the procedure of Bocchi and Palla 11 followed by N' protectJion 

yielded iodides 6. Hindered rotation about the 2-2' bond was evident from the diastereotopic AB patterns, in 

the 1H NMR spectrum for the protons in the CH2 groups of 6b. Preparation of carbene complex 7a was 

accomplished under the standard conditions of metal halogen exchange, addition to chromium hexacarbo:ayl 

and methylation with methyl triflate. 12 However, differentially protected biindolyls were problematic. We had 

earlier prepared allyl/benzyl and benzyl/phenylsulfonyl protected 2,2'-biindolyl iodides, but they failed to yield 

carbene complexes under the usual conditions. The difficulty may be due to steric hindrance by the two large 

protecting groups preventing anion addition to chromium hexacarbonyl. In contrast, employing the smailler 

allyl and methoxymethyl protecting groups in 6b allowed for successful formation of carbene complex 7b. 
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With carbene complexes 7a mid 7b in hand, we examined their use in benzannulation reaction,,; to 

construct the central ring of the indolocarbazoles with concomitant formation of hydrogen bonding moieties 

(Schemes 4 and 5). Following our earlier reports on photochemical benzannulation reactions, 7 photolysis of 

7a generated product 8a in 51% yield via the intermediacy of a photogenerated ketene. 13 The product was 

readily apparent from the two doublets at 8.22 and 8.37 ppm in the 1H NMR spectrum for the bay region 

protons and the phenolic proton at 9.37 ppm. Complex 7a also underwent an aminobenzannulation reactic)n. 8 

Addition of tert-butyl isonitrile to the carbene complex formed an intermediate ketenimine which cleanly 

underwent thermal cyclization producing amine 9a in 89% yield, t4 Again, the benzannulated product was 

obvious from the bay region protons at 8.35 and 8.77 ppm in the IH NMR spectrum. 
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Finally, we turned our attention to carbene complex 7b which contains removable protecting groups 

(Scheme 5). In analogy to complex 7a, both photochemical and isonitrile-initiated thermal annulation reactions 

were successful, generating products 8b and 9b in 63% and 74% yields, respectively. Again, the products 

had characteristic low field resonances in the IH NMR spectra for the bay region protons and, in contrast with 

iodide 6b and carbene 7b, the protons in the CH2 groups of the products did not display diastereotopic AB 

patterns in the 1H NMR spectra. 

Scheme  5 
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In summary, we have shown that complex and sterically encumbered 2,2'-biindolyl chromium carbene 

complexes can be prepared and subsequently employed in annulation reactions. This strategy provides access 

to indolocarbazoles containing hydrogen bonding functionality mimicking important protein kinase C inhibitLng 

indolocarbazole natural products. 
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